Homework Assignment #2 PS405 Atomic & Nuclear Physics

Due: Wed. September 7, 2016

September 3, 2016

1. It is possible to construct an eigenfunction that satisfies the time-independent Schrodinger equation, and yet has the acceptable property that its probability density does not change by a relabeling of the particles. In fact, there are two ways of doing this. Consider the following two linear combinations:

Symmetric
$$\psi_S = A(\psi_a(1)\psi_b(2) + \psi_b(1)\psi_a(2))$$
 and

Antisymmetric
$$\psi_A = A(\psi_a(1)\psi_b(2) - \psi_b(1)\psi_a(2))$$

Show that the normalization constant A for ψ_S and ψ_A is $\frac{1}{\sqrt{2}}$.

Note: You should not have to do any integration if you use the "bra"-"ket" notation, and assume that the single-particle wave functions are ortho-normal.

2. There are two identical non-interacting particles confined in an infinitely-deep one-dimensional potential well of length L. One particle is in the n=2 state and the other particle is in the n=1 state.

Calculate their mean separation as defined by the following: $\langle |x_1 - x_2| \rangle$

a. If the total wave function for the two-particle system is described by $\psi_{\mathcal{S}}$. Symmetric

$$\langle |x_1 - x_2| \rangle_S = \underline{\qquad} L$$

b. If the total wave function for the two-particle system is described by ψ_A . ${\it Antisymmetric}$

$$\langle |x_1 - x_2| \rangle_A = \underline{\qquad} L$$

c. If the total wave function for the two-particle system is described by $\psi_{\it D}$. $\it Distinguishable$

$$\langle |x_1 - x_2| \rangle_D = \underline{\qquad} L$$